Guiding the way to a perfect welding seam The in-process optical seam tracking with TH6D paves the way toward a perfect welding seam: Components and joints are recorded using a combination of laser lines and a camera, allowing the course of the welding seam to be corrected in real time. Contact free and independent of both system and process, the method is suitable for all standard seam shapes and types of material. Universal, precise & non-touch! #### **TH6D FAQ** #### 1) How does the TH6D work? - A. It works on the concept of laser triangulation. A laser diode inside of the sensor creates lines and projects to the part. These lines reflect and are picked up by a camera. Data is then turned into lines which the system interprets as the joint and sends positional information to the motion system. - B: Information output includes data for X, Y and Z positions, rotation angle around each axis, joint, gap, mismatch, etc. #### 2) Why are three beams better than one? - A. Three times the sampling allowing for excellent stability during the acquisition of measurement data. - B. Uses the average of the three beams to calculate the path allowing for greater variances in material quality. | Detail | One-Line | More-Line | |-------------------------------|---|--| | Seam geometry information | Y, Z, gap, area, mismatch, length of laser line | Y, Z, gap, area, mismatch,
length of laser line | | Angles | Not available, theoretical about comparing two or more pictures and robot information | A, B, C right, C left, C total | | Measure redundancy | None | In every picture | | Plausibility | None, because of missing redundancy | Yes, because of redundancy | | 3D applications | Only with additional software or multiple part measurement | Possible, due to all necessary information in one picture | | Equivocality | None | Equivocality are possible, software parameters and filter supporting | | Arithmetic average | Not available, theoretical possible calculating robot position with sensor measurements | Available | | Concave-convex part detection | Not possible | Available, due to distance in x of laser line | #### 3) What is the standoff distance? What is the look ahead distance? - A. Standoff: 150mm (+/- 12mm) - B. Look ahead (Robot Applications): 10mm to 30mm - C. Look ahead (Fixed Automation): 10mm on the low side as far forward as the process will allow. #### 4) What is the resolution of the camera? What is the sampling rate? - A. 0.03mm x 0.07mm - B. 60 240 Hz # 5) Will the TH6D work on stainless steel or aluminum? Can the TH6D work on shiny material in general? - A. Yes, there can be a little more setup as the sensor angle to the joint is not as forgiving. - B. The system uses a data filter which is implemented by software and its purpose is to erase the reflections and all other light influences like the ones shown below: - i. Welding spatter - ii. Excessive reflection due to high reflective surfaces like aluminum Without filtering With filtering #### 6) What kind of tracking speed can be expected to achieve? A. 6m/min (256 IPM) has been verified as possible with the right set up. Actual speed will vary to some extent. Most high end arc applications are at 80 - 120 IPM. the TH6D is capable of processing these speeds with good stability. #### **TH6D FAQ** #### 7) What are my mounting options? A. A number of pre-engineered mounts are available. Reference Mounting Options chart of page 5. Note: Contact Scott Huber or Toli Tselichev for specific applications. #### 8) What are the robot requirements? - A. Robots will typically require a specific software set on the controller to support the installation and interpretation of data flow for motion control. - B. Most connections are done via Ethernet however digital/analog interfaces are available as well. Reference Robot Requirements chart on page 6. # 9) What type of welding joints can the TH6D track? A. There are a number of pre-engineered welding joints defined. See below. #### 10) Am I limited to arc welding applications - A. This unit can be used for virtually any process that requires real time seam tracking including, but not limited to, MIG, TIG, plasma, laser, brazing, sealing, caulking, cutting, etc. - B. The addition of the AutoGuide to the product line is another great use for the TH6D. AutoGuide is an integrated product that includes a TH6D sensor, torch mount, and 2 axis motor package to control torch position (Y and Z up to 200 mm total in each direction) based on the TH6D seam tracking information. This can be used for gantry or fixed position welding and contains its own control package for setting up the seam tracking unit. # **Mounting Requirements** | TH6D Part
No. | Torch
Mounting
System | Robot Model | Flange | Torch Type | | |---------------------|-----------------------------|----------------------------|------------|--|---| | 780.3241.0 | | | 780.3606.0 | ABIROB A500/22° (980.
ABIROB A500/35° (980. | | | 780.3242.0 | iSTM | Fanuc Arcmate
100/120iC | 780.3606.0 | ABIROB A500 (980.10 | 015.0) | | 780.3245.0 | | | 780.0680.0 | ABIROB 350GC/30° (98
ABIROB W600 0°/22° (782.01 | | | 780.3251.0 | iCAT | | | ABIROB A360 22*/35* (980.10
ABIROB A500 22*/35* (980.10
ABIROB W500 45* (782
ABIROB W600 0*/22* (782.01
ABIROB 350GC 30* (98)
ROBO WH500 (962.1 | 913/980.1014)
2.0078)
90/782.0191)
0.0028) | | 780.3261.0 | .6714 | ABB IRB
2600iD | 284.0499.0 | | | | 780.3272.0 | iSTM | ABB 1600iC | 780.0678.0 | ABIROB W600 0°/22° (782.01 | 91/782.0192) | | For external robots | | | Torch mou | nting system | | | 780.3266.0 | CAT2 | | | ABIROB W500
22° (782.003/782.0076)
35° (782.0004/782.0077)
45° (782.0005/782.0078)
ABIROB A360
22° (980.1024) | 780.0414
780.420
780.0422
780.0444 | | 780.3270.0 | CAIZ | | | ABIROB W600
22° (782.0910/782.0214)
35° (782.0192/782.0215)
45° (782.0193/782.0216) | 780.0781
780.0782
780.0784 | ## **TH6D FAQ** # **Robot Requirements** | Dalas | Interface | Robot requirements | | | | |-----------------------|---------------------------------|---|---|--|---| | Robot
Manufacturer | | Hardware | Software | Data Link
Sensor-robot | Calibration
with | | ABB | Ethernet
Serial | - Controller iRC5 | - Robot System Software 5.15
- Option "Optical Tracking Arc
660-1" | Ethernet Serial IRS-732 | Scansonic or
ABB calibration
plate | | Fanuc | Ethernet | - Controller R-J3iC
- Controller R-30iA
- Controller R-30iB
- Ethernet Part #2 must
be free | - Operation system Fanuc "Arc
Tool"
- Universal Sensor Interface
(R691)
- User Socket Messaging (R648) | Ethernet | 10 Point mea-
surement (Opt:
calibration plate
837.0882.1) | | KUKA - | RSI Interface | KR C2 edition 0.5
- Network Card 3Com
3C905CX-TX-M or
Ethernet 100Mbit PCI | KUKA System Software (KSS) 5.4; 5.5 or 5.6 Software Modules: - RSI Interface - XML protocol - Inline standard form KUKA System Software 8.2.20 | Ethernet | Scansonic calibration plate | | | | KR C4
Standard Ethernet port | (or higher) KUKA Robot Sensor Interface 3.1.3 KUKA.Ethernet KRL 2.1.3 | | | | | Seam Tech
Interface | KR C2 edition 05 - Network Card 3Com 3C905CX.TX-M or Ethernet 100Mbit PCI | KUKA System Software (KSS) 5.4; 5.5 or 5.6 Software Modules: - SeamTech tracking(containing RSI Interface) - XML protocol KUKA System Software 8.2.20 (or higher) | Ethernet | | | | | Standard Ethernet port | KUKA.Robot.Sensor Interface 3.1.3 KUKA.Ethernet KRL 2.1.3 - RoboStar V | | | | Reis | Serial
Ethernet | IPC with RS422 interface
refit | - Software Version 20.0 or
higher (Proprietary Protocol) | Serial RS-422
Ethernet | Reis calibration
plate | | | D/A Interface | - Controller DX100
- General Sensor DX100
with sensor board
- XO102-card | Software Version 24 or higher Robot System Software DS2.05.00A (-)00 | Digital and
Analog Signals | Golden Seam
Referenz Path | | Yaskawa | Ethernet | Controller DX100 | - Robot System Software DS1.61.00A-27 Tip: Port5020 has to be addressed in robot settings | Ethernet | Calibration
plate | | | Digital/
Analog
Interface | Analog input for
measurements
- Side (y)
- Height (z) in the range
of ±10V/
4-20mA | SPS | D/A interface
other fieldbus on
request | | | | Universal
XML Inter-
face | Protocol of SML - com-
munication is based on
the principles of ISO-OSI
Reference model. Lowest
layer is on Ethernet. The
XML communication is
located in layers 5-7. | SPS | No. Layer 7 Applicatio 6 Display 5 Communicat 4 Transport 3 Operation 2 Protection 1 Bit transfe | dard ASCII,
0-127)
TCP
IP | | Cloos | No interface | yet, Cloos is working or | n an Ethernet interface for new
able by the end of 2014. | controllers, possib | e interface avail- | # **Specification Information** #### Sensor head TH6D-150-CFAA-AB | Field of measurement | Width: ± 8 mm | |----------------------------------|-----------------------------------| | | Height: ± 12 mm | | Optical resolution in the TCP | 0.07 mm/pixel along X axis | | | 0.03 mm/pixel along Y axis | | Nominal working gap $(z = 0 mm)$ | 150 mm from bottom edge of sensor | | Nominal working gap $(x = 0 mm)$ | 10 mm from rear edge of sensor | # GROUP LIT.9242 Rev A • 09-14 • Printed in USA • © Copyright ### TH6D FAQ # **Specification Information** #### **TH6D Sensor Head General Dimensions** | | Characteristics | |------------------------------|---| | Configurations | TH6D-150-CFAA-AB | | Power supply | 12 - 36 V DC (125 mA max. at nominal 24 V) | | | Protected against false insertion | | Weight | TH6D sensor head: 0.53 kg | | | TH6D sensor head including safety glass unit: 0.65 kg | | Limiting acceleration (mech) | 3 g (with or without function operations) | | Laser protection class | 3B | | Protection class | IP64 (with plugged in connectors) | | Operating wavelength | 660 nm | | Max. laser output | 50 mW | | Dimensions | 70 x 121 x 40 mm (L x H x W) | Abicor Binzel Corporation 650 Medimmune Court, Suite 110 Frederick, MD 21703 Phone: 800.542.4867 Fax: 301.846.4497 E-Mail: customerservice@abicorusa.com